Fourth Semester B.E. Degree Examination, June-July 2009 Field Theory

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

State and explain experimental law of Coulomb.

(05 Marks)

- Identical point charges of 3μC are located at the four corners of the square of 5cm side, find the magnitude of force on any one charge.
- c. Using Gauss law, determine electric field intensity every where due to a hollow sphere of (07 Marks) charge.
- Obtain an expression for the energy expanded in moving a point charge in an electric field. 2
 - b. Potential is given by $V = 2(x+1)^2(y+2)^2(z+3)^2$ volts in free space. At a point P(2, -1, 4)calculate i) Potential ii) Electric field intensity iii) Flux density and iv) Volume charge density.
 - Obtain boundary conditions for dielectric-dielectric boundary.

(07 Marks)

 Explain Poisson's equation & Laplace equation. 3

(05 Marks)

- b. Given the potential field $V = [Ar^4 + Br^{-4}] \sin 4\phi$ volts. Show that $\nabla^2 v = 0$, select A & B so that v = 100 volts and $|\ddot{E}| = 500$ v/m at $P(r = 1, \phi = 22.5^{\circ}, z = 2)$. (08 Marks)
- State and prove Uniqueness theorem.

(07 Marks)

- a. Using Biot Savart's law, obtain magnetic field intensity expression due to an infinite length (05 Marks) conductor carrying current I.
 - Derive the general expression for the field B at any point along the axis of a solenoid. (08 Marks)

Define vector magnetic potential. Prove that $A = \int \frac{\mu_0 J dv}{4\pi R}$.

(07 Marks)

PART - B

- Derive Lorentz force equation and mention the application of the solution. (05 Marks) 5
 - b. Derive an expression for the force on a differential current element placed in a magnetic field. Find the force per meter length between two long parallel wires separated by 10cm in air and carrying a current of 10A in the same direction. (08 Marks)
 - Derive differential form of continuity equation.

(07 Marks)

- a. What is the inconsistency of Ampere's law with the equation of continuity? Derive the modified form of Ampere's law of Maxwell.
 - b. Given $\vec{E} = E_0 \sin(wt \beta z)$ ay v/m in free space. Find i) \vec{D} ii) \vec{B} iii) \vec{H} . Sketch \vec{E} & \vec{H} at
 - Write Maxwell's equation in point form and in integral form for time varying fields.

(07 Marks)

7 a. Define wave equation. Derive the wave equation for \vec{E} in a general medium. (05 Marks)

For an electromagnetic wave propagating in free space, prove that

i) $\frac{|\vec{E}|}{|\vec{H}|} = \eta$ ii) $\vec{E} \& \vec{H}$ are mutually perpendicular (08 Marks)

State and prove Poynting theorem.

(07 Marks)

8 a. Define 'depth' of penetration'. Show that depth of penetration of a wave in a conductor decreases with an increase in frequency. (05 Marks)

 Show that at any instant the magnetic and electric field in a reflected wave are out-of phase by 90°. (08 Marks)

c. Define Brewster's angle. Derive the necessary expression in terms of permittivity. (07 Marks)